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1 Motivation

This contribution presents new data analysis techniques to improve the density profile reconstruc-
tion for frequency swept X-mode reflectometry. This effort undergoes in three fronts: the initial-
ization of the reconstruction; the inversion method that reconstructs the density profile; and the
description of blind areas to the reflectometer. The description of blind areas is the subject of
an additional contribution in this same workshop. The initialization technique is assumed well
implemented by the established techniques described in Refs. [1, 2] and will be further accessed in
the future. The focus of this contribution is on new inversion techniques.

2 New integration shapes and accuracy benchmarking

The method published by Bottollier-Curtet et al [3] has been the standard density profile recon-
struction method in X-mode reflectometry ever since. To improve the accuracy of the reconstruction
method, shapes more complex than linear for the last integration step of the refractive index were
investigated. The shapes tested included parabolas, square root and xα, with α between zero and
1/2. The exponent α can be demonstrated to be directly translated to an integration weight factor
named W , with W = 1/(α+1). The detailed development of each method can be found in reference
[4]. The benchmarks were performed on the synthetic profiles shown in Fig. 1. Synthetic data was
used because it is the only way to know how precise was the profile reconstruction. It is also the
most accurate way to enforce the reconstruction conditions in the initialization and the noise level.

By working with the synthetic profiles shown in Fig. 1, the ideal refractive index shapes of the
type xα can be accessed. The respective W profile is shown in Fig. 2.

Initially, the profile of the ideal W given in Fig. 2 is used to benchmark the reconstruction
accuracies and later on, the methods to determine the W factors are discussed. Applying all
methods introduced on the synthetic profiles of Fig. 1 yields the reconstruction discrepancy profiles
presented in Fig. 3.

Starting with the parabolic implementation, the reconstruction accuracy starts less accurate
than the linear method in the plasma edge and becomes slightly more accurate in the plasma
core. However in this case no stabilization parameter was necessary. Implementing the square root
integration shape yield a more accurate reconstruction overall, but specially in the plasma core.
This is because the square root shape describes very accurately the refractive index shape in these
conditions. Optimizing the integration weight factor W made the reconstruction more accurate
and stable in the plasma edge, achieving stable sub-millimeter precision across the entire profile.

3 Analysis of the reconstruction stability

The linear Bottollier-Curtet’s algorithm (when W=1/2) turned out to be unstable and a stabi-
lization mechanism was introduced. The measured phase shift of each frequency step is averaged
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Figure 1: Frequency profiles from typical Tore Supra discharges including a pedestal located at
R=12 cm and B=2T at the plasma center.
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Figure 2: Profile of weight factors W for the typical Tore Supra profiles example as depicted in
Fig. 1.

with the value of the previous step. In order to analyse the stabilization mechanisms, the recursive
formula for the computation of each radial step can be written in a simplified way as:

∆R =
∆φ

WN
, (1)

with ∆R being the radial step normalized by the probing wavelength (Rn − Rn−1)/λn, ∆φ
being the phase increment of the probing frequency fn from Rn−1 to Rn, normalized by 2π, and
N being N(fn, Rn−1).

First, the averaging with the previous step, as in the linear Bottollier-Curtet solution, was
tested for every component of Eq. 1 (the radial step, the phase shift and the value of Nn−1). The
conclusion is that there is no preferred component to be stabilized. The best component to stabilize
varies depending on the profile to be reconstructed. Next, the numerical stability is investigated
by the propagation of errors in each element of Eq. 1. An error in the evaluation of N(Rn−1)
and ∆φRn

Rn−1
comes from an error in the determination of Rn−1. Meaning that an error in the

position Rn is due to not using the ideal value for W , plus the error propagated from the previous
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Figure 3: Profiles of absolute radial discrepancy when reconstructing the density profile with the
conditions of 500 probing frequencies, a precision of 0.1mm in the initialization and the Tore Supra
example profiles as depicted in Fig. 1.

position into ∆φ and N . The propagation of these error sources in φ, W and N , can be evaluated
by equating them as in Eqs. 2 to 4, respectively. The error in ∆φ is additive, whereas in W and
N , the error is introduced as a multiplicative factor ǫ and ζ, respectively.
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All reconstruction steps are subject to the error of not using the ideal local value of W , plus
the error propagating from the previous steps. Directly from Eqs. 2 to 4, it can be observed that
the errors in the evaluation of the phase shift will be multiplied by the factor 1/WN , whereas the
errors in the refractive index and weight factor are multiplied by ∆φ/WN . Furthermore, any error
in each element of Eq. 1 induces an oscillation. For example, an excess in Rn causes an excess in
the computed ∆φn

0 for the frequency fn+1. Which causes an under evaluation of ∆φn+1
n , resulting

in under evaluating Rn+1. These errors are damped or not depending on these error multiplicative
factors written in Eqs. 2 to 4.

The combination of these facts shows that the more efficient scenario to damp errors is when
WN is greater. Because the error is multiplied by 1/WN in the next step. Furthermore, the
reconstruction only damps the previous errors when 1/W is between one and two (the step function
and linear cases). For 1/W equals or greater than two there is no damping of errors. These
conclusions come from the oscillatory character explained. An error of +E in one step translates
into an error of −E in the next step. When this error is multiplied by one, the best damping
occurs because +E − 1 × E = 0. When it is multiplied by two, no damping occurs because
+E − 2 × E = −E. Since there is no error damping and an additional error is introduced in
every step by not using the perfect value of W , the system becomes unstable. This interpretation
explains why it is observed that the square root integration shape converges, unlike the linear
integration, and when the factor W and N are closer to one that any error introduced is damped
more efficiently. This last feature is observed in the edge conditions in the next section. A last
remark is that this analysis is done focusing on the true local values of W . Using W = 1 when it is
not the ideal value can be interpreted as if the damping efficiency is not of W = 1, but of the ideal
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local value itself, and in addition, an error is introduced from the excess in W , as it was shown in
Eq. 3.

4 Noise analysis

In experimental data there are always many sources of noise. This section shows the impact on the
reconstruction accuracy from adding white noise and localized spikes in the phase signal. First, a
spike of 1% is added in the phase shift of a single frequency. The radial error at the location where
the phase shift spike was introduced is presented in Fig. 4.
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Figure 4: Radial discrepancy when reconstructing the density profile with a 1% spike in the phase
shift of a single frequency and conditions of 500 probing frequencies, a precision of 0.1mm in the
initialization and the linear fR profile.

Fig. 4 shows that an error introduced is damped faster for the square root method. The
parabolic method enforced boundary conditions to find the parabolas and this made the error
propagate longer. Small density perturbations were also tested but they had the same features as
presented in the phase shift case in Fig. 4.

Next, white noise is added to the phase shift data, as a percentage of the average value, to
simulate the experimental noise in the Tore Supra example. Fig. 5 shows the obtained accuracies
for the reconstruction methods with fixed W = 2/3 and optimized W profile, at two different noise
levels. From the interpretations on the last section, one can verify how indeed the edge region is
very efficient in damping the noise introduced since 1/WN is minimized. This is an interesting
feature of the reconstruction method since the edge region is typically more prone to noise and
fluctuations in tokamaks. In the core region, on the other hand, the discrepancy saturates at a
higher value, depending on the noise level. All methods showed the exact same tendency. They
retain the same discrepancies in the edge region for all noise levels and linearly increase in the core
as the noise level increases. The parabolic method is not represented because it was able to find
the parabolas only with a maximum noise level up to 1%. Beyond this level of noise, the method
is unable to associate parabolas for the data in too many cases and the method collapses to the
linear solution.

5 Methods to find the profile of the integration factor W

The first method to implement an optimized W profile is to do it iteratively. At each profile
reconstruction, a simulation can determine the optimized values ofW based on the profile previously
reconstructed. However, this is the most computational demanding approach to this problem. On
the other hand, for a specific well known case, taking the solution in Fig. 2 as example, the ideal
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Figure 5: Radial discrepancy when reconstructing the density profile with different levels of white
noise in the phase shift data and conditions of 500 probing frequencies, a precision of 0.1mm in
the initialization and the typical low B Tore Supra example profile. Each discrepancy profile is the
average of 500 reconstructions.

W profile can be determined beforehand. The transition from W ∼ 1 to W = 2/3 is quite linear
in this case and the position where W converges to 2/3 is clearly marked by the presence of a
pedestal. In these two implementations, the bottleneck parameters are the assumption of the first
value of W and the compatibility of the profile shape. Although these methods were tested and
showed improved reconstruction accuracy, the most general, reliable and accurate implementation
is to determine the factor W at each frequency step based on the local plasma parameters. This
solution is fully developed in Ref. [4]. The obtained expression for W is:

W (Nn−1, fR,∇fR) =
1

α(Nn−1, fR,∇fR) + 1
, (5)

α(Nn−1, fR,∇fR) = 0.5− 0.5[γ(fR,∇fR)N
2
n−1 + δ(fR,∇fR)N

4.44
n−1], (6)

γ(fR,∇fR) = p1(fR)/[∇fR − p2(fR)] + p3(fR), (7)

δ(fR,∇fR) = q1(fR)/[∇fR − q2(fR)] + q3(fR), (8)

with fR taken as the probing frequency pn and qn given by Eqs. 9 to 14:

p1 = a1f
2
R + b1fR + c1, (9)

p2 = a2f
6
R + b2f

5
R + c2f

4
R + d2f

3
R + e2f

2
R + f2fR + g2, (10)

p3 = a3f
4
R + b3f

3
R + c3f

2
R + d3fR + e3, (11)

q1 = a′1f
3
R + b′1f

2
R + c′1fR + d′1, (12)

q2 = a′2f
2
R + b′2fR + c′2, (13)

q3 = a′3f
5
R + b′3f

4
R + c′3f

3
R + d′3f

2
R + e′3fR + f ′

3, (14)

with all the fitting parameters ai to gi and a′i to f ′

i listed in Ref. [4].
This final expression allows to optimize the weight factors W at all frequency steps and achieve

the accuracy shown in Fig. 3 for any profile shape that satisfies the boundary conditions assumed
when solving for W . An additional application of this solution is to use less probing frequencies
for real-time monitoring of fast profile evolution.
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6 Reconstructions with less probing frequencies

Up to now, all profile reconstructions obeyed the rule of more probing frequencies results in better
accuracy. Which is mainly because the refractive index shape is better described by a square root
function the smaller is the radial step. In addition, the error introduced by miscalculating the
area under the refractive index curve is proportionally bigger to the increase of the radial step,
emphasizing the previous feature. With the results of the previous section, however, the mismatch
in the shape of the refractive index can be corrected. Therefore, the profile can be reconstructed
using less probing frequencies without loss of accuracy.

Using less probing frequencies speeds up the reconstruction algorithm, allowing for monitoring
of faster density profile evolution. This was tested for the Tore Supra example profile when reducing
the number of frequencies from 500 to 100 and speeding the reconstruction in roughly five times,
depending on the computer set-up. In this case, the fluctuations in the edge region peak at one
centimeter when the factor W is fixed at 2/3. When W is optimized for all steps, the discrepancy
profile go back to values below one millimeter.

Other examples that can benefit from optimizing the factor W include cases with very low or
high magnetic fields, because the refractive index in the previous cut-off is higher the farther the
two frequency profiles, fce and fpe, are from one another. To demonstrate one case, a low density
profile linear in fR with ∇fR = 20GHz/m is assumed. In this condition, no pedestal is present
and it is not clear where the square root function describes well the refractive index shape. In
addition, the number of probing frequencies is reduced to 50. Applying the method developed in
the previous section gives the optimized W for each probing frequency as presented in Fig. 6. In
this case, the W profile is never too close to the square root method solution of 2/3, it is always
above 0.7. The accuracy of the reconstructed profiles before and after optimizing the W profile
are depicted in Fig. 7. A maximum error of 0.4mm is observed in the reconstructed profile when
the W profile is optimized. If reducing even more the number of probing frequencies, the radial
steps become too large. In such cases, the error in the trapezoidal integration before the last step
surpasses the error from integrating the last radial step. For all cases explored here, the error in
the trapezoidal integration surpasses the error in the last step when the radial step surpasses 5 cm.
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Figure 6: Ideal W (R) and the obtained W (R) from the method of Sec. 5 for a linear fR profile
with ∇fR = 20GHz/m and only 50 probing frequencies.

The reduction on the number of frequency steps was also tested in the Tore Supra example
with the introduction of white noise in the time of flight and phase shift data. When a low level
of white noise is introduced, up to 1%, no difference is observed between the cases with 500 or
100 frequencies. For higher levels of noise the discrepancy in the core raises, doubling the noiseless
value at around 10% noise level.
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Figure 7: Example of the optimization of the weight factor W (R), as defined in Eq. 5, for a linear
fR profile and only 50 probing frequencies.

7 Conclusions

Following the recent advances and demands in the reflectometry techniques, deeper understanding
and additional improvements on the density profile reconstruction method was aimed here in the
data analysis front. A crucial point in the reconstruction method is the assumed refractive index
shape in the integration over each radial step. The obtained results from all reconstruction methods
demonstrated that using appropriate fractional power functions, implemented with the factors
W (R), improves the reconstructed profile accuracy and stability because they are a much better
match to the true refractive index profiles. Although the use of a square root profile achieved
good results in the core plasma, it is not the best suited shape in the edge plasma. In this region,
the power of the fractional power functions used to describe the refractive index profile can be
very close to zero in the first reflected frequencies. The adaptation of the power of these functions
according to the plasma profile showed an accuracy improvement in plasma edge conditions from
millimeters to sub-millimeters for the conditions assumed.

The numerical stability analysis showed how the reconstruction is more stable when not using
any information of the previously calculated positions to determine the next position, or even,
forcing smoother variation on any of the reconstruction terms. All these procedures were demon-
strated to delay the error damping capability of the reconstruction method when spurious events
and phase noise were introduced. The relations between the noise level, the optimal W (R) and the
obtained accuracy were well covered by Fig. 5. The typical edge conditions lead to higher values of
WNn−1. It was demonstrated mathematically and observed in Fig. 5 that the higher is WNn−1,
the better the reconstruction damps errors and noise. This is a convenient feature for the profile
reconstruction since there are typically higher noise levels in the edge plasma. In the core region,
on the other hand, the reconstruction error consistently increases as the noise level increases.

When reconstructing a well known density profile shape containing a clear pedestal transition,
the optimized integration shapes could be easily proposed. The limitations being the pedestal to
be evident and the determination of the first integration shape. The method elaborated in Sec. 5
suppresses these issues. It can be used to determine the entire profile of integration factors for any
profile shape. Optimizing the integration factors also allow to use a reduced number of probing
frequencies to reconstruct the profile without any accuracy loss, as demonstrated in two examples.
This feature enables the real-time monitoring of faster density profile evolution.
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